.
.
Monday March 18, 2024     Day 40
Orbital shapes and Energies

Textbook Readings

7.6: The Shape of Atomic Orbitals


Course Lectures

7.6 pdf  Video    Quantum Mechanical Atom
7.9 pdf  Video*   Atomic Orbitals


Objectives

1.  Describe what is meant by the wavefunction.


2. 
Distinguish between the probability density
     graph
and the radial probability graph
     and how they're related.


The Shapes of Atomic Orbitals

3.  Interpret the  probability density graph   a.k.a Ψ2 vs. radial distance) and what it
     suggests about the probablity of finding an   electron in an atom.


4.
Interpret the radial probability graph  (Ψ2r2 vs radial distance) and what it suggests
      about the probablity of finding an electron in an atom.

5. Be able to identify the shapes and quantum numbers of s, p, d and f orbitals

Homework Problems

42. 1   What is the wavefunction and what is
            it good for?

42.2    Probability density can be observed at
           a concert. Where would you expect to
           find the highest density of people in the
           audience?  Is that the place you'd most
           likely expect to find someone wearing a
           red cap?

42.3    When squared, the wavefunction for an
           electron in an atom yields the probability
           density (Figure at right).
           Probability density is volume dependant
           The rookie chemistry student might look
           at the probability density graph and
           suggest incorrectly the electron would be
           found where in an atom?

Probability Density graph
42.4    When the available space is included
           in the quantum mechanical atom, the
           probability of find an electron in the
           nucleus is practically zero since the
           nucleus is so small. 

           The Radial Probability is a graph that
           includes the volume factor (figure at
           right).  Where would the rookie
           chemistry student correctly predict the
           highest likelyhood of finding an electron.

           Draw this graph in your notebook and
           indicate your answer.
          
Radial Probability
42.5.  Orbitals are typically drawn to represent  the likelyhood of finding an electron 90%
          of the time.  What percent of the time would we expect to find the electron outside the orbital?

42.6  Nodes are regions within the atom where it is unlikely for an electron to be found.  Nodes exist
          within orbitals and are most easily seen in "s" orbitals.   Use your textbook and determine
          for s orbitals how the number of nodes depends on the n quantum number.


42.7    Identify each of the orbitals at right
           as "s", "p", "d" or "f".

42.8    For each orbital, write quantum number
           combinations that could represent the
           orbital n, l and ml
           (Multiple correct answers
           are possible but they must follow the
           quantum number rules!)


Radial Probability
By Geek3 - Own work; created with hydrogen-cloud in PythonThis PNG graphic was created with Python., CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=69035277
Click and drag the region below for correct answers

42.1  The wavefunction is a solution to the Schodinger equations.  The wavefunction includes the
         particle and wave nature of matter and can be used to, amongst other things, predict the
         probability or likelyhood of finding an electron in a specific place within an atom.
42.2  My experience is that the highest density of concert-goers is right up next to the stage.  People
         tend to get very tightly packed.  However, if you're looking for a red hat, it is much more likely
         you'll find one if you expand your search to areas away from the stage where most of the people are.
42.3  The rookie chemist would incorrectly pick the place where the curve is highest (i.e. the stage)
          which is on the nucleus.
42.4   This graph incorporates density and available space.  The electron would most likely be found
          at the graph's peak.  However, note that the graph predicts the electron can be found in other
          locations with lower probability.
42.5   It is 10% likely that an electron will be found outside of the orbital.
42.6   The number of nodes for s orbitals is n - 1
42.7    a. 1s     b. 2s      c. 2p     d. 3s    e. 3p     f. 3d    g. 4s     h.  4p      i. 4d      j. 4f
42.8    Answers may vary but all must follow the rules:

           a. n = 1    b. l = 0       c. ml = 0
           b. n = 2    b. l = 0       c. ml = 0
           c. n = 2    b. l = 1       c. ml = -1
           d. n = 3    b. l = 0       c. ml = 0
           e. n = 3    b. l = 1       c. ml = +1
           f. n = 3    b. l = 2        c. ml = -2
           g. n = 4    b. l = 0       c. ml = 0
           h. n = 4    b. l = 1       c. ml = 0
           i. n = 4    b. l = 2        c. ml = -1
           j. n = 4    b. l = 3        c. ml = +3
          
.
.
.
Tuesday March 19, 2024      Day 41
Electron Configurations

Textbook Readings

8.1: Nerve Signal Transmission

8.2: The Development of the Periodic Table


8.3: Electron Configurations:
       How Electrons Occupy Orbitals



Course Lecture

8.1.  pdf  Video*    Electrons in atoms
8.2.  pdf  Video*    Electron Energies
8.3.  pdf  Video*    Electron Energies and Shielding
8.4.  pdf  Video*    Quantum Mechanical
                                Electron Energies
8.5.  pdf  Video*    Aufbau Principle
                                 and Electron Configurations

Objectives

1. Know how to fill atomic energy levels from
     the low to high energies utilizing the Aufbau
     principle, the Pauli Exclusion Principle, and
     Hund's rule.

2.  Utilize the electron spin quantum number, ms,
      and the Pauli Exclusion Principle to fill
      suborbitals with electrons.

3.  Write electron configurations for neutral
     atoms from scratch and using the periodic
     table.
Quantum Numbers, Atomic Orbitals, and Electron Configurations (Entire Video)


4.  Given electron an electron configuration, determine the element that belongs with it.

5.  Identify the important regions on the periodic table:
      Metals, Nonmetals, and Semimetals
      Alkali metals, Alkaline Earth Metals, Halogens and Noble Gases
      Main Group elements, Transition elements, Inner transition elements


Homework Problems


43.1 What property of electrons gives them their magnetic characteristic?

43.2 What is the maximum number of electrons that can be found in a 3s atomic orbital?

43.3 What is the Pauli Exclusion Principle?

43.4 What are the spin orientations for the electrons in a 3s orbital?  
          ...what are their ms quantum numbers?

43.5  A 3s orbital with two spin up electrons is ...
    a. Impossible          b. discouraged        c. possible under extraordinary circumstances    d.common

43.6 Draw the orbital diagram and write the electron configuration of a neutral atom
        that has 16 electrons.

43.7
Draw the orbital diagram and write the electron configuration of a neutral atom
        that has 19 electrons.

43.8
Draw the orbital diagram and write the electron configuration of a neutral atom
        that has 22 electrons.


43.9 Draw the orbital diagram and write the electron configuration of a neutral atom
        that has 50 electrons.  (Yes, I know.  Ouch.)

 
For the following problems, use your periodic table to determine the electron configurations
of the elements that are specified.

43.10 Write the *shorthand electron configuration for a neutral nickel atom.

43.11 Write the
*shorthand electron configuration for a neutral germanium atom.

43.12 Write the
*shorthand electron configuration for a neutral cesium atom.

43.13 Write the
*shorthand electron configuration for a neutral bromine atom.
 
*  Shorthand refers to using the nearest noble gas in brackets to abbreviate as much of the
    electron configuration as possible. 


Click and drag the region below for correct answers


43.1 Being charged, electrons spin giving them N and S poles.  The poles reverse if the electron spins in the opposite direction.

43.2 The 3s orbital can hold no more than 2 electrons.

43.3 If an orbital is full (2 electrons) the electrons must have opposite spin and ms quantum numbers

43.4 One electron is spin up ↑ the other electron is spin down ↓.   ms= +1/2  and  ms = -1/2s
43.5

43.6   1s2 2s
2 2p6 3s2 3p4                   Click here for orbital diagram
43.7   1s2 2s2 2p6 3s2 3p6 4s1             Click here for orbital diagram
43.8   1s2 2s2 2p6 3s2 3p64s2 3d2        Click here for orbital diagram
43.9   1s2 2s2 2p6 3s2 3p6  4s2 3d10  4p6 5s2 4d10 5p2      Click here for orbital diagram

43.10  [Ar]
4s2  3d8               
43.11  [Ar] 4s2 3d104p2          
43.12  [Xe] 6s1                       
43.13  [Ar] 4s2 3d104p5

.
.
.
Wednesday March 20, 2024   Day 42
Electron Configurations for Ions, Exceptions and Valence Electrons

Textbook Readings

8.3: Electron Configurations:
       How Electrons Occupy Orbitals


Course Lectures:

8.6.  pdf  Video*     Electron Configurations
                                 and the Periodic Table:

Electron configurations for ions


Electron Configurations, Exceptions,
and Valence Electrons




Objectives

1.  To be able to write electron configurations for
     anions and cations.

2.  You will recognize situations where an
      exception to the Aufbau principle exists.

3.  You will know how to derive electron configs
     for Mo, Cu, Ag, Cr and Au.

4.  You will be able to write an electron
      configuration and from it identify the
       number of core, outer and valence electrons.

How to Find the Inner, Outer and Valence Electrons of an Element


Homework Problems

44.1  Write the complete  electron configuration for a chlorine ion: Cl-.             (Source)

44.2 
Write the complete  electron configuration for an oxygen ion: O2-             (Source)

44.3  Write the complete  electron configuration for a chromium III ion: Cr3+  (Source)

44.4  Write the complete  electron configuration for an iron III ion: Fe3+           (Source

44.5  For each of the following elements, write out the electron configuation you would
         expect based upon the simple application of the periodic table, and s/p/d blocks.

         a. Molybdenum         b. Copper         c.    Silver          d. Chromium       e. Gold

44.6  Each of the elements from 44.5 is actually an exception to the a straightforward application
         of the Aufbau principle.  For each element write the actual electron configuration and give
         the reason it is lowest in energy and therefore preferred.

44.7  What are ... a. Core electrons     b. Outer electrons    c. Valence electrons

44.8  For each of the following neutral atoms, write out the electron configurations using the
        [Noble Gas] abbreviation.  Then identify the number of core electrons, outer electrons
          and valence electrons.

      a. Boron       b. Chlorine      c. Krypton       d. Copper      e. Iron       f.  Silver     g. Magnesium



Click and drag the region below for correct answers

44.1    1s2 2s2 2p6 3s2 3p6

44.2  
1s2 2s2 2p6

44.3   1s2 2s2 2p6 3s2 3p6 3d3

44.4   1s2 2s2 2p6 3s2 3p6 3d5

44.5   a.  Mo    Expected:  [Kr] 4d4 5s2    

          b.  Cu    Expected:   [Ar] 3d9 4s2     

          c.  Ag    Expected:  [Kr] 4d9 5s2                


         d.   Cr   
Expected:  [Ar] 3d4 4s2

         e.   Au    Expected:    [Xe] 4f14 5d9 6s2       
                       
Did you remember the 4f electrons in your electron configuration?


44.6   a.
Mo     Actual: [Kr] 4d5 5s1  
                         moving
an electron from 5s to 4d  leaves one level  "half full" and the other "half full"
                         and this situation is lower in energy.

          b.
Cu     Actual:   [Ar] 3d10 4s1
                       
moving an electron from 4s to 3d  leaves one level  "full" and the other "half full"
                        and this situation is lower in energy.

          c.
Ag     Actual:   [Kr] 4d10 5s1    
                        moving an electron from 5s to 4d  leaves one level  "full" and the other "half full"
                        and this situation is lower in energy.

          d. 
Cr     Actual:    [Ar] 3d5 4s1
                       
moving an electron from 4s to 3d  leaves one level  "half full" and the other "half full"
                         and this situation is lower in energy
  
           e.
Au    Actual:    [Xe] 4f14 5d10 6s1
                       
moving an electron from 6s to 5d  leaves one level  "full" and the other "half full"
                        and this situation is lower in energy.


            
44.7   Core electrons occupy the lost energies and innermost orbitals
          Outer electrons occupy the largest and outmost orbitals
          Valence electrons are the outer electrons that can be either transferred or
                  shared with another atom.  Typically, these electrons are everything beyond
                  the noble gas core.

44.8      a.   Boron           [He] 2s2 2p1             2 core electrons,  3 outer electrons, 3 valence electrons
             b.   Chlorine      [Ne] 3s2 3p5            
10 core electrons, 7 outer electrons, 7 valence electrons    
             c.   Krypton       [Ar] 3d10 4s2 4p6      18 core electrons, 8 outer electrons, 18 valence electrons
             d.   Copper        [Ar] 3d10 4s1            18 core electrons, 1outer electron,    11 valence electrons
             e.   Iron              [Ar] 3d6 4s2             18 core electrons, 2outer electrons,   8 valence electrons
             f.    Silver            [Kr] 4d10 5s1           36 core electrons, 1 outer electron,   11 valence electrons
             g.   Magnesium  [Ne] 3s2                   10  core electrons, 2 outer electrons,   2 valence electrons
.
.
Thursday   March 21, 2024     Day 43
Trends in Atomic & Ionic Radii and the Effects of Nuclear Shielding

Textbook Reading

8.6: Periodic Trends in the Size of Atoms
        and Effective Nuclear Charge



Course Lecture

8.7.  pdf  Video* Atomic Trends and
                             Ionization Energy

8.9.  pdf  Video     Atomic Trends, Ionic Size &
                                Magentism

Atomic Radii Trends

Effective Nuclear Charge, Shielding effect,
& Periodic Properties


Objectives

1.  Describe the methods used to determine the
      radius of atoms.

2.  Use the periodic table and the vertical and
     horizontal trends to predict relative atomic
     sizes.

3.  Describe how nuclear shielding works and
     the effects it has on atomic radii.

4.  Create isoelectronic series of atoms and ions
     and order them from smallest to largest.

Isoelectronic Series and the Relative Sizes of Ions


Homework Problems

45.1   What are the three  ways atomic radii are "measured?"  Draw a picture that demonstrates each.

45.2   In what corner of the periodic table do you find the smallest neutral atoms?
          In what c
orner of the periodic table do you find the largest neutral atoms?

45.3   Use your periodic table to predict which of the following would have the largest atomic radius.
          a.  Li        b.  K          c. Rb       d. Fr          e. Cs

45.4 
Use your periodic table to predict which of the following would have the smallest atomic radius.
          a.
Zn         b. Sc         c. Cr       d. Cu          e. Ni

45.5 
Use your periodic table to predict which of the following would have the largest atomic radius.
          a.
N           b. O           c. P         d. S         

45.6   In your own words describe what is meant by "nuclear shielding."

45.7   For each of the following neutral atoms, determine
           i.  Number of protons        ii.  Number of core electrons      iii.   Zeff

           a.   Li          b. Na        c. Be         d. Mg

45.8  
Generally speaking, each of the following generally produces a larger atom.  Why?
           a. increased shielding of core electrons
           b. greater numbers of outermost electrons
           c. Occupancy of larger orbitals (e.g. 1s .... 2s ... etc.)

45.9  For each of the following isoelectronic species, give the electron configuration and calculate
        
Zeff . Based on these results, which should be the smallest?
          a. F-             b.   Ne         c. Na+
       

45.10  For each of the following, determine the electronic configuration and the .  Then use these
           results to arrange  them in order of increasing radii.
           Ca2+     
Cl -    S2-     P3-     K+
          
45.11  How does orbital "penetration" explain the fact that the 2s orbital is lower in energy than
            the 2 p orbital?

Click and drag below for answers:

45.1      Covalent radius:  distance between atom centers connected by covalent bond.
             Metalic radius:   distance between atom centers arranged in a metalic solid.
             Van der Waals:    distance between atom centers in closely packed atomic arrangement
                                           an approximation used when solids aren't normally found as in
                                           the noble gases.
45.2    The largest atomic species are located in the lower left hand corner of the periodic table.
           The smallest
atomic species are located in the upper right hand corner of the periodic table.

45.3    d                    45.4   a                  45.5   c

45.6    Nuclear shielding  occurs when negatively charged core electrons protect outermost
            electrons from the full attractive "pull" of the positively charged nucleus. 
           They do this by effectively neutralizing a portion of the nucleus positive charge responsible
            for the atom's holding onto electrons.

45.7     a.  Li:   P+ =  3        Core e- = 2            
Zeff  = +1
            b. 
Na:  P+ =  11      Core e- = 10           Zeff  = +1
            c.  Be:   P+ =  4        Core e- = 2             Zeff  = +2
            d.
  Mg   P+ =  12      Core e- = 10           Zeff  = +2
                 
45.8    a.  Increased shielding means outermost electrons don't experience the full attractive pull
                of the nucleus.  This let's them be further away from the nucleus and the atom is
                therefore bigger.
            b. Electrons repel eachother.  Adding more electrons to the same orbital introduces more
                 repulsivity within the orbital and it "puffs up" and gets bigger.
            c.  Higher energy orbitals (think 1s  ... 2s ... 3s ... etc) are larger.  As they're occupied, a
                 larger atom is the result.

45.9 
a.  F-    ...    1s2 2s2 2p6           Zeff = +7   
         b.
Ne    ...    1s2 2s2 2p6           Zeff = +8
         c. Na+  ...     1s2 2s2 2p6             Zeff = +9    (Larger  Zeff  produces greater electron attraction and
                                                                             smaller species)
45.10  
  All are isoelectronic and therefore have the same electron configuration!
              Ca2+     ...
1s2 2s2 2p6  3s2 3p6   Zeff = +10  (smallest)
               K+       ... 1s2 2s2 2p6  3s2 3p6     Zeff = +9  
               Cl -      ... 1s2 2s2 2p6  3s2 3p6     Zeff = +7     
               S2- 
      ... 1s2 2s2 2p6  3s2 3p6     Zeff = +6      
               P3- 
      ... 1s2 2s2 2p6  3s2 3p6    Zeff = +5    (Largest)

45.11  The 2s orbital has a region of total probabilty that gets in close to the nucleus (labelled
             penetration on the figure) and this is something the 2p orbital lacks.  Since electrons have
             less potential energy when positioned closer to the nucleus, the 2s orbital is slightly lower
             in energy than the 2p orbital.
             

.
.
.
Friday March 22, 2024    Day 44
Periodic Trends:  IONIZATION ENERGY


Textbook Readings

8.7: Ions- Configurations, Magnetic Properties,
        Radii, and Ionization Energy




Course Lectures

8.7.  pdf  Video* Atomic Trends and
                             Ionization Energy

Ionization Energy*


The Periodic Table: Atomic Radius, Ionization Energy, and Electronegativity  (Through 5:36)

 
Objectives

1. Describe ionization of atoms in words and
    with "equations."

2. Write first, second, third etc. ionization   
     equations and describe how and why
     the ionization energies are different.

3.  Relate ionization energies to the size
     of the atom.

4.  Describe how ionization energies are
     affected by 1/2 full and full orbitals.

5.  Identify an element based on a list of its
      ionization energies.

Practice Problem: Ionization Energy


Homework Problems

47.1  In your own words describe what ionization energy is and how it depends on the size of an
         atom or ion.

47.2 
In your own words describe how ionization energy depends on the number of electrons in the
         atomic orbital (i.e. full orbital, half filled orbital, or partially filled orbital).

47.3 
Consider the ficticious element "X".  Write equations for the first, second and third
          ionization of this element. 

         Arrange the respective ionization energies (I.E.) in increasing order.

47.4  Using ONLY a periodic table, predict which of the following
         elements has the highest ionization energy. Explain your answer.
         a. hydrogen     b. helium        c. neon   d. Calcium 

47.5  
Using ONLY a periodic table, predict which element in each of the following pairs
           has the larger first ionization energy.
Explain your answer.
          a. Na or Mg                      b. Mg or Al                        c. F or Cl

47.6  What period 3 element would have the following successive ionization energies?    
            IE1 = 786 kJ    IE2 = 1580 kJ    IE3 = 3230 kJ    IE4 = 4360 kJ      IE5 = 16000 kJ

47.7  Generally, we expect ionization energies to increase as we consider element left to right
         on the periodic table. Based on this, we'd expect oxygen's first ionization energy (IE1) to be greater
         than nitrogen's IE1
         Write the electron configurations for neutral oxygen and nitrogen atoms and then
         explain why oxygen's first ionization energy is actually less than nitrogen's?

47.8  Which of the following atoms would you expect to have the largest
IE3 ?   Why?
           a. Na        b.  Mg       c.  Al            d.  Si              f.  P

47.9   Arrange the folloing in order of decreasing ionization energy:  
           IE1 for Al        IE1 for Tl     IE2 for Na         IE3 for Al      Explain your answer.

Click and drag the region below for correct answers

47.1  Ionization energy is the energy required to remove an electron. 
          Small atoms generally have high ionization energies
47.2  1/2 or full orbitals are low in energy and preferred.  Removing an electron from such an orbital requires
          a lot of energy in comparison to removing an electron from a partially filled orbital.
47.3   First ionization:         X
→    X+   +     e-            IE1
           Second ionization:   
X+ → X2+   +    e-            IE2
           Third ioinization:     
X2+ → X3+   +    e-           IE3
                                                                                                         IE1  <  IE<   IE3
47.4   Helium:  Why?

47.5   a.  Mg     b. Mg    c. F    Why?
47.6   Silicon   Why?
47.7   Oxygen   1s2 2s2 2p        Nitrogen:
1s2 2s2 2p3          Removing an electron from nitrogen means going
           from a 1/2 full p orbital to a partially filled p orbital.  This requires more energy as it isn't
            preferred.      Removing an electron from the oxygen 2p orbital CREATES a 1/2 filled
           situation and as that's

           preferred,   it's easier and the ionization energy is less.
47.8  
IE2 for Na  >    IE3 for Al    >    IE1 for Al      >    IE1 for Tl
47.9   See Dr. Dave's video and practice problem  above for the answers to this question.


.
.