

's" b	lock	la nĝ		1013		es el	ļa a	8.838	j.	838-5	ĝ	a 103	i.	838	nija -	60 B	e Ka
1s ¹												"p" block					1s ²
2s1	2s ²		a. 191	273	lan i I	ka en l	ia e 1	1 105	Sec. S	23.3		2p1	2p²	2p3	2p4	2p ⁵	2p ⁶
3s1	3s ²				"d" block				1 I National II			3p1	3p²	3p ³ 3p ⁴	3p4	3p5	3p6
4s ¹	4s ²	3d1	3d ²	3d ³	3d4	3d ⁵	3d6	3d7	3d ⁸	3d ⁹	3d ¹⁰	4p1	4p ²	4p ³	4p ⁴	4p ⁵	4p ⁶
5s1	5s2	4d ¹	4d ²	4d ³	4d ⁴	4d ⁵	4d ⁶	4d7	4d ⁸	4d9	4d10	5p1	5p ²	5p	5p4	5p5	5p ⁶
6s ¹	6s²	5d1	5d²	5d ³	5d4	5d ⁵	5d ⁶	5d ⁷	5d ⁸	5d ⁹	5d ¹⁰	6p1	6p²	6p ³	6p ⁴	6p ⁵	6p
7s ¹	7s ²	6d1	6d²	6d ³	6d ⁴	6d ⁵	6d ⁶	6d7		125 0	 - -	C 160	5	2.53	inger E		

Chapter 8

Electron Configuration and Chemical Periodicity

Stern-Gerlach Experiment

Stern-Gerlach Experiment

Collector Plate

Walther Gerlach Otto Stern

...as the story goes

- ...Stern smoked bad cigars
- ...Breathed on the collector plate (breath contained sulfur!)
- ... Trace Ag converted to Ag₂S
- ...Making the spots visible!
- ...Conclusion: Two types of electrons!

Stern-Gerach Experiment

Electrons come in two different types are identified by the electron spin quantum number

m_s

 $m_s = +\frac{1}{2}$ ("Spin up") $m_s = -\frac{1}{2}$ ("Spin down")

Pauli Exclusion Principle

No two electrons can have the same set of four quantum numbers

 $(n \ \ell \ m_{\ell} \ m_{s})$

in the same atom. n = 2 $\ell = 1$ $m_{\ell} = -1$ $m_s = +\frac{1}{2}$ n = 2 $\ell = 1$ $m_{\ell} = -1$ $m_{ss} = +\frac{1}{2}$

> Maximum Capacity for 2p_x is 2 electrons!

