Atomic Trends: Ionic Size

Magnetism:

Diamagnetic: Not attracted by magnetic fields

N≡N: no unpaired electrons

http://www.chem.uiuc.edu/clcwebsite

N_{2(I)} -195.8 °C (-320.4 °F) ...contains NO unpaired electrons Paramagnetic:

Attracted by magnetic fields

http://www.chem.uiuc.edu/clcwebsite

O_{2(I)} -183.0°C (-297.3°F).

... contains unpaired electrons

Metals, Non-metals and Metaloids

1B 2B

Pariodic Table

Metaloids

Low Ionization Energies (easy to remove e⁻)

High Electron Affinities (additional e⁻ not welcome) High Ionization Energies (Difficult to remove e⁻)

Low Electron Affinities (additional e⁻ VERY welcome)

Why Are There Multiple Charge States?

Finally, an answer to this "pesky" question.

Question: What are the common ions for lead (Pb)?

Answer: Pb²⁺ Pb⁴⁺ Why? 82 Pb $Pb \longrightarrow 2e^- + Pb^{2+} \longrightarrow 2e^- +$ **Pb**⁴⁺ [Xe] 6s² 5d¹⁰ 6p² [Xe] 6s² 5d¹⁰ [Xe] 5d¹⁰ ... 6s² electrons ...outer 6p² pseudo-noble gas ("inert pair") are electrons are electron configuration removed next removed first