Quantum Mechanical World

Quantum Mechanics

The branch of physics and chemistry that examines the wave motion of objects on an atomic scale.
$\ldots \lambda_{\text {particles }} \approx$ dimensions of the surroundings in atomic environment.

The "Quantum Garage"

Quantum Mechanical World

Heisenberg Uncertainty Principle

...it is impossible to know both the position and momentum (speed \times mass) of a particle at the same time.

Werner Heisenberg 1901-1976
Mathematically:

$$
\Delta x \cdot m \Delta u \geq \frac{h}{4 \pi}
$$

Δx : Uncertainty in particle's position.

If Δx is small you know the particle's position well but...
Δu : Uncertainty in particle's velocity. $\Delta \mathrm{u}$ must be large and you have little information about the particle's speed.

Heisenberg Uncertainty Principle

Quantum Mechanics Schrodinger Equation

Schrodinger's Equation:

$$
\left(\frac{\delta^{2} \Psi}{\delta z^{2}}+\frac{\delta^{2} \Psi}{\delta x^{2}}+\frac{\delta^{2} \Psi}{\delta y^{2}}\right)+V \cdot \Psi=E \cdot \Psi
$$

Equation is solved in various situations for Ψ
Ψ has no physical significance!

Erwin Schrodinger (1887-1961)
Ψ^{2} is the probability of finding an electron in a specific space.

Solutions to the Schrodinger Equation

Probability $=5 \times 5=25$	
Probability $=11 \times 4=44$	
Increasing	
probability	

The Quantum Mechanical Atom

