.
.
.
Monday  April 15, 2024    Day 60
Valence Bond Theory Part 2

Textbook Readings :

10.7: Valence Bond Theory:
          Hybridization of Atomic Orbitals


Course Lecture

10.9    pdf  Video  Valence Bond Theory 2
10.10  pdf  Video  Valence Bond Theory 3
Hybridization sp3 in methane molecule



sp3d Hybridization and the Trigonal Bipyramidal Arrangement



Objectives

1. Determine molecular hybridization for advanced sp3, sp3d and sp3d2 molecules that may also
   contain lone pair electrons.
   
2.  Determined promoted states and hybrid states for the molecules specified above.

3.  Draw molecular pictures that include  orbital overlap, sigma bond identifications
     and bond angles accounting for lone pair distortion of the molecular framework.



Homework Problems

For the each of the molecules in 65.1 and 65.2 determine the following:

                i.    Lewis structure
                ii.   Hybridization
                iii.  Electronic and molecular geometry names
                iv.  Ground state of the centermost atom
                v.  Promoted state of the centermost atom
                vi.   Hybrid state of the centermost atom
                vii.  Molecular picture including sigma bonds and lone pair electrons
                viii. Bond angles including distortions due to lone pair influences.

65.1   a.  CH4       b.  NH3      c.  H2O

65.2   a.  AsF5       b.  SF4      c.  BrF3  
   
Click and drag the region below for correct answers

65.1   a.  CH4       b.  NH3      c.  H2O    ...on your own.  Don't "Google it."
65.2   a.  AsF5      b.  SF4        c.  BrF3  
...on your own.  Don't "Google it."       

.
.
.
.
.
Tuesday April 16, 2024    Day 61
Valence Bond Theory Part 3


Textbook Readings

10.7: Valence Bond Theory:
          Hybridization of Atomic Orbitals



Course Lectures

10.9    pdf  Video  Valence Bond Theory 2
10.10  pdf  Video  Valence Bond Theory 3

Objectives

1. Determine molecular hybridization for
    advanced sp3, sp3d and sp3d2 molecules
    that may also contain lone pair electrons.
   
2.  Determined promoted states and hybrid
     states for the molecules specified above.

3.  Identify un-hybridized unpaired electrons
     and use them to construct off-axis pi bonds.



Sigma and Pi Bonding in Ethene (C2H4) (Hybridization)





Homework Problems
       
For the each of the molecules in 66.1  determine the following:

                i.    Lewis structure
                ii.   Hybridization
                iii.  Electronic and molecular geometry names
                iv.  Ground state of the centermost atom
                v.  Promoted state of the centermost atom
                vi.   Hybrid state of the centermost atom
                vii.  Molecular picture including sigma bonds and lone pair electrons
                viii. Bond angles including distortions due to lone pair influences.


  66.1      a. I3-                      b.   CH3CH3         
              
c.  CH2CH2          d.   CH2O
 


Click and drag the region below for correct answers

 
66.1     a. I3-                         b.   CH3CH3         
           
c.  CH2CH2              d.   CH2O        (On your own!)
.
.
.
Wednesday April 17, 2024    Day 62
Intermolecular Forces vs. Intramolecular Forces
Solids Liquids Gases


Textbook Readings

11.1: Water in Zero Gravity

11.2: Solids, Liquids, and Gases:
          A Molecular Comparison


Course Lectures

11.1 pdf  Video    Intermolecular forces
                              and phase changes

Water in Space: Imbedded GoPro


The arrangement of particles in
solids, liquids and gases

Objectives: 

1.  Describe the similarities and differences between the three phases of matter: solid, liquid and gas.

2.  Distinguish between intermolecular and intramolecular forces.

Homework Problems

1.  Use your textbook and the video above to list the chemical and physical characterisitcs
     of solids, liquids and gases. 

2.  What does it mean to be "compressible?"
      Why are gases compressible while solids and liquids are not compressible?

3.  What are intermolecular and intramolecular forces?  Use  H2O molecule(s)
       to to provide diagrams illustrating these two types of forces.

4.  Why are the intermolecular forces between gas phase particles weaker than the forces between
       solid and liquid particles?

5.  As we know, nature prefers situations of low energy.  For soap and water bubbles,
      this means settling on a shape that has the minumum surface area.  What is this shape?

6.  Define each of the following terms that are used to describe properties of liquids.

      a. Density                               b. molecular order               c. compressibility    
      d. thermal expansion            e. diffusion                             f. fluidity

7.   Intermolecular forces can be described as either cohesive or adhesive
      What's the difference between these forces?
 
 

Click and drag the region below for correct answers.

1. Refer to text book for answers.
2. The word "compressible" refers to how a material changes volume when external forces are
     applied.  A pillow would be considered compressible while a brick would be incompressible.
3.  Intermolecular forces exist between molecules.  Intramolecular forces exist within a molecule.
     The covalent bond within a water molecule is an intramolecular force.  The attraction
     between the positive end of one water molecule and the negative end of a different water
     molecule is an intermolecular force.
4.  Intermolecular forces depend on distance.  If molecules are far apart, the intermolecular
     forces are weak.  I'll leave it up to you make sense of how this applies to solids, liquids and
     gases.
5.   A sphere!
6.   Refer to text book for answers.
7.  Cohesive intermolecular forces exist between  molecules of the same substance.
     Adhesive forces exist between molecules of different substances.
    
.
.
.
Thursday  April 18, 2024    Day 63
Intermolecular Forces:  The details.

Textbook Readings

11.3: Intermolecular Forces:
         The Forces that Hold Condensed
         Phases Together


Course Lecture

11.6  pdf  Video    Intermolecular forces and details.
Intermolecular Forces and Boiling Points

 
Hydrogen Bonding and Common Mistakes



Objectives

1.  Rank the common intermolecular forces in order of increasing strength.

2.  Describe the similarities and differences between dipole-dipole attractions
     and hydrogen bonding.

3.  Describe the process by which Van der Waals (a.k.a. London Dispersion Forces) develop
     beween molecules.


4.  Describe how & why boiling point temperatures depend on the strength of
     intermolecular forces. 

5.  Arrange molecules in order of increasing boiling point temperatures.

6.  Identify hydrogen bonding between molecules.

7.  Explain why ice is less dense than liquid water and why this is environmentally significant.


Homework Problems

1.  Ion-ion and dipole-dipole intermolecular forces are the result of positives attracting negatives.
     However, Van der Waals forces are the attractions between non-polar molecules.
     How do Van der Waaals forces work?
 
2.  Rank the following intermolecular forces in order of increasing strength.
     dipole - dipole        
ion - ion          ion - dipole           hydrogen bonding       Van der Waals

3.  Determine the types of intermolecular forces that most significantly apply
     to each of the following:
     a.  NH3              b.  Br2                   c.   PH3                 d.  HF                e.  CCl4
     f.   H2                 g.  He                    h. CH3OH            i.  CH3CH3       j.   CaCl2

4.  Use what you know about intermolecular forces to pick which of the following would have
     the highest boiling point temperature.  Provide an explanation for your choice.

      a.  H2S   or H2O              b.  Br2   or    HBr          c.   NaCl   or    KI 

      d.  CH3CH2CH2CH3   or    CH3CH3                     e.  CI4    or CF4

5.   Why is ice less dense than liquid water?  Draw a pictures of liquid and solid water that
       demonstrates this idea using six water molecules for each of the two figures.


Click and drag the region below for correct answers

1.   Van der Waals forces develop when electrons in one molecule, momentarily shift to
      one side making it negative and leaving the other side positive.  In response to this,
      neighboring molecules also develop momentary positive and negative sides that are
      (briefly) attracted to the other molecules around it.
2.    Strongest:  ion-ion   
                              ion - dipole  
                                    hydrogen bonding
                                            dipole-dipole 
                                                     Van der Waals   ...weakest
3. a. Hydrogen bonding        b.  Van der Waals     c.   dipole-dipole    d. Hydrogen Bonding
    e. Van der Waals               f. Van der Waals       g. Van der Waals      h. Hydrogen Bonding
    i. Van der Waals                j. Ion-ion

                ****Note that Van der Waals attraction is ALWAYS present  ****
       The above answers refer  to the most important attraction of all those possible.
4.   a. H2O        b.   HBr        c.   NaCl        d.  
CH3CH2CH2CH3       e. CI4 
5.   When ice forms from liquid water, hydrogen bonding sets up a structure that contains
      more empty space than what was true for water.  More internal empty space (more volume)
      decreases the density of the ice.
.
..
.
.
.