

Valence Bond Theory: Multi-center atoms

Single bond between the carbons permits rotation about this bond.

Valence Bond Theory: *Multi-Center Atoms* **CH₂CH₂:** *Trig. Planar (sp²) C: e⁻ configuration:* 1s²2s²2p²

2p

2s

1s _<u></u>1↓

2p _

Sp²

Ground State 2 unpaired e⁻ ⇒ 2 possible bonds! **Promoted State** 4 unpaired e[.] ⇒ 4 possible bonds 1s 1↓ Hybrid State
3 sp² hybrid levels

1 Un-hybridized atomic 2p orbital4

Valence Bond Theory: Multi-center atoms

Ethene

Double bond makes it <u>very difficult</u> for molecule to rotate about the C=C bond

Un-hybridized 2p orbitals

atomic 2p orbitala!

Valence Bond Theory: Multi-center atoms

Ethyne

Triple bond makes the ethyne molecule very rigid. and difficult to bend.