Midterm Exam 1

Minneapolis Community and Technical College

CHEM 1151 Fall 2023 ... Boraas

Administrative Use Only

Scantron: + SW

Directions:

- Write your name at the top of this exam (No chemical symbols). 1.
- Record your name and the exam version (A or B) on the scantron answer sheet.
- Record your answer to each question on the Scantron answer sheet IN PENCIL.
- Return this exam and all other materials (Scantron, periodic table, scratch paper) when finished.

Failure to do so at the time of the exam will result in a zero for the exam.

Scantron answer sheets will be graded as received and not reviewed for erasures, smudges or anything else that may result in a mis-graded form. Make no stray marks or smudges on the scantron answer sheet. If you must erase, do so completely.

Name

- On your scantron answer sheet, next to your written name, write the chemical symbol for calcium.
- If you believe your scantron answer sheet will not grade properly, ask for a new, clean scantron answer sheet.
- Always choose the closest answer. "f" is NEVER the correct answer.
- 1. Carefully examine the nuclide symbol at right and determine which of the following is correct.

a. Protons =
$$16$$
Neutrons = 18 Electrons = 14 b. Protons = 18 Neutrons = 34 Electrons = 16 c. Protons = 34 Neutrons = 18 Electrons = 20 d. Protons = 18 Neutrons = 16 Electrons = 16 e. Protons = 20 Neutrons = 18 Electrons = 16 f. Protons = 18 Neutrons = 16 Electrons = 20

- 2. How many individual potassium ions would be found in 5.33 grams of K₃PO₄? (Closest Answer)
 - a. 1.51×10^{22} potassium ions b. 4.54×10^{22} potassium ions

 - c. 5.04×10^{21} potassium ions
 - d. 3.79×10^{22} potassium ions
 - e. 1.12×10^{23} potassium ions f. 1.24×10^{22} potassium ions
- **3.** Two atoms are isotopes when ...
 - a. Both atoms have the same number of protons and neutrons
 - b. Both atoms have the same number of protons and electrons
 - c. Both atoms have different numbers of protons and neutrons
 - d. Both atoms have the same number of neutrons but different numbers of protons
 - e. Both atoms have the same number of protons but different numbers of neutrons
- 4. How many moles of Ca(NO₃)₂ there in a 12.88 gram sample? (Closest answer)
 - a. 0.07850 moles
 - b. 0.1261 moles
 - c. 0.08582 moles
 - d. 0.1838 moles
 - e. 0.2011 moles
- 5. What is the result of the calculation at right with the correct number of significant digits?

$$\frac{(0.88 + 0.21)}{(150.50 - 145.88)} =$$

USE #2 Pencil! Errase completely!

1. [a][**44]**[c][d][e]

2. [a][b][c][**a**][e]

3. **[m]**[b][c][d][e]

- a. 0.23593
- b. 0.2359
- c. 0.236
- d. 0.24
- e. 0.20
- f. 0.10

- **6.** Which of the following is the correct formula for Zorba (I) sulfate?
 - **a.** $Z(SO_4)_2$
- **b.** \mathbb{Z}_2 SO₄
- **c. Z** SO₄
- **d.** $Z_2(SO_4)_2$
- e. ZS

7. A metal rod is weighed and found to have a mass of 112.5 grams.

Next the metal rod is placed in a partially filled graduated cylinder (See figure at right).

What is the density of the metal rod? (Closest answer please)

a. 15.61 g/mL

- b. 7.86 g/mL
- c. 11.98 g/mL

d. 13.89 g/mL

- e. 5.84 g/mL
- f. 0.180 g/mL
- **8.** What is the correct chemical formula for **calcium nitrate**?
 - a. CaNO₃
- b. KNO₃
- c. Ca(NO₃)₂

- d. CaN
- e. CaN₂
- f. Ca₂NO₃

9. Given the problem outlined at right =>

Which of the following dimensional analysis solutions is correct? (Molar masses are given on top)

a.
$$\frac{52.5 \text{ g}}{1} \times \frac{1 \text{ mole}}{32.00 \text{ g}} \times \frac{1 \text{ mole}}{1 \text{ mole}} \times \frac{18.015 \text{ g}}{1 \text{ mole}} =$$

b.
$$\frac{52.5 \text{ g}}{1} \times \frac{1 \text{ mole}}{32.00 \text{ g}} \times \frac{5 \text{ mole}}{3 \text{ mole}} \times \frac{44.00 \text{ g}}{1 \text{ mole}} =$$

c.
$$\frac{52.5 \text{ g}}{1} \times \frac{1 \text{ mole}}{32.00 \text{ g}} \times \frac{3 \text{ mole}}{5 \text{ mole}} \times \frac{44.00 \text{ g}}{1 \text{ mole}} =$$

d.
$$\frac{52.5 \text{ g}}{1} \times \frac{1 \text{ mole}}{44.00 \text{ g}} \times \frac{4 \text{ mole}}{5 \text{ mole}} \times \frac{44.00 \text{ g}}{1 \text{ mole}} =$$

- 10. Which of the following volume measurements is correct for the graduated cylinder at right?
 - a. 36 mL
- b. 4.4 mL

c. 3.610 mL

- d. 3.59 mL
- e. 3.5 mL

- f. 3.6 mL
- 11. Which of the following is a molecular compound?
 - a. CH₃Cl
- b. KCl
- c. NaNO₃
- d. CuCl₂
- e. RbBr

- 12. What is the correct name for PF_5 ?
 - a. Phosphorus fluoride
 - b. Monophosphorus tetrafluoride
 - c. Phosphorus pentafluoride
 - d. Platinum fluoride
 - e. Paladium fluoride
 - f. unobtainium phosphide
- 13. Calculate the mass percent composition of lithium in Li₃PO₄.
 - a. 26.75 %
- b. 17.98 %
- c. 30.72 %
- d. 55.27 %
- e. 20.82 %

- **14.** Which of the following is a possible *molecular formula* for C₄H₄O?
 - a. $C_8H_8O_2$
- b. C₁₂H₁₂O₂
- c. C₂H₂O
- d. C₈H₈O
- d. $C_{12}H_8O$

	C_8H	18 (1)	+	$O_{2(g)}$	\rightarrow	CO_{2}	g) +	H_2	$O_{(g)}$		
	a. 25	b. 22		c. 18		d. 14	e.	10	f. 9		
16. I	How many moles of	K ₂ SO ₄ c	an be p	produced by	14.8 mol	es of H ₂ SO	3 and exce	ss KMn	O_4 ?		
	2 KMnO	+	5	H ₂ SO ₃	\rightarrow	2 M	nSO ₄	+	K_2SO_4	+	2 H ₂ SO ₄
	a. 74.0 moles K d. 2.96 moles K					SO ₄ SO ₄			oles K ₂ SO ₄ noles K ₂ SO ₄		
17. W	Which of the following a						on monox	ide gas a	ınd water vapor.		
		a. 2 C	₂ H _{6 (g)}	+ 7 O _{2 (g)} —	4 CO ₂	$_{(g)} + 6 H_2 O$	(g)				
		b. C ₂ I	I _{6 (g)} +	$5 O_{(g)} \rightarrow 2$	CO (g)+	3 H ₂ O (g)					
		c. 2 C	₂ H _{6 (g)}	+ 5 O _{2 (g)}	4 CO ($_{g)} + 6 H_{2}O$	(g)				
		d. C ₂ I	H _{6 (g)} +	$7 O_{(g)} \rightarrow 2$	CO _{2 (g)} -	+ 3 H ₂ O _(g)					
		e. 2 C	₂ H _{6 (g)}	+ 6 O _{2 (g)} —	→ 2 CO	$_{(g)} + 3 H_2C$) _(g)				
18.	Given the molecula	r equatio	n:								
	NaCl _(aq)	+	Agl	$NO_{3(aq)}$	\rightarrow	$AgCl_{(s)}$	+ N	aNO _{3(a}	ıq)		
	What is the corr	ect net i	onic eq	uation?							
	a. Na ⁺ (aq) + b. Na ⁺ (aq) + c. NaCl _(aq) + d. Ag ⁺ (aq) + e. no correct	Cl ⁻ (aq) AgN(Cl ⁻ (aq)	+ A	g ⁺ (aq) +		$\begin{array}{ccc} \rightarrow & & A \\ \rightarrow & & A \end{array}$	$4g^{+}_{(aq)} +$	Cl ⁻ (aq	$+ Na^{+}_{(a)}$	nq)	+ NO ₃ -(aq)
19. V	What is the mass (in a. 0.35		.84 mo	les of titaniu b. 0.122		c. 0.820 l	ag d.	0.280 k	rg e. 0.632	l kg	

20. Calculate the atomic mass of element "X", if it has 2 naturally occurring isotopes with the following masses and natural abundances:

> X-45 44.8776 amu 32.88% 67.12% 46.9443 amu X-47

a. 46.26 amu b. 45.91 amu c. 46.34 amu

d. 46.84 amu

e. 44.99 amu

 $\textbf{21.} \quad \text{Which species is reduced in the redox reaction at right:} \quad Mn^{2^+}{}_{(aq)} \quad + \quad Fe_{(s)} \quad \rightarrow \quad Mn_{(s)} \quad + \quad Fe^{2^+}{}_{(aq)}$

 $a.\ Mn^{2^{+}}$

b. Mn

c. Fe

 $d.\;Fe^{2^{+}}$

22.	The following reaction occurs with 75% yield in the laboratory. How many moles of $SrF_{2(g)}$ will actually be produced by 4.0 moles of HF and excess $Sr(OH)_2$?										
	Sr(OH) _{2(s)}	+	2 HF _(g)) →	SrF _{2(g)}	+	2H ₂ O	(1)			
	a. 0.50 mo	ole _{SrF2}	b. 1	.0 mol SrF2	c. 1	1.5 moles	S SrF2				
	d. 2.0 mol	es srF2	e. 2	.5 moles _{SrF}	2 f. 3	.0 moles	SrF2				
23.	Examine the following	chemica	ıl equation a	and mole val	lues:						
		Cr ₂ O _{3(s)} moles			$Cr_2S_{3(s)}$	+ 3	$H_2O_{(l)}$				
	What is the	e limiting	g reactant?	a. $Cr_2O_{3(s)}$	b. $H_2S_{(g)}$	c.	$Cr_2S_{3(s)}\\$	d. H ₂	$O_{(l)}$		
24.	The volume of a sample How many grams of o						lease)				
	a. $1.25 g_{O2}$	b	. 4.88 g _{O2}	c. 10.9	g _{O2} d. :	5.90 g _{O2}	e. 2.95	5 g _{O2}	f. 5.10	g _{O2}	
25.	Which of the following	gas sam	ples would l	behave mos	t ideally under	the state	d conditions	?			
	a. CO ₂ at 200 atm a	and 25°C	b. C	0_2 at 0.5 atm	and 30°C	c. (CCl ₄ at 15 at	m and 0	K	d. C ₂ H ₆ O at S'	ГР
26.	What effect does double temperature is held co	_	olume of an	ideal gas ha	ave on the pres	ssure of a	gas if there	are no le	eaks in the	container and th	e
	a. Doubling the volb. Doubling the volc. Doubling the vold. No correct answer	ume will ume will	double the half the pre	pressure.	ressure under	hese con	ditions.				
27.	Calculate the change in in volume at 1.00 atm			•		bing 35.8	8 kJ of heat	and is ex	xpanding t	from 8.00 to 24.0	L
	a. +51.8 kJ	b	15.8 kJ		c16.6 kJ		d29	9.3 kJ		e. +34.2 kJ	
28.	Calculate the amount of specific heat capacity				e temperature (of a 79.0	g sample of	ethanol	from 298.	0 K to 385.0 K.	The
	a. 57.0 kJ	b	. 16.6 kJ		c. 73.6 kJ		d. 28.4	4 kJ		e. 12.9 kJ	
29.	Which of the following a. The freezing of v b. The combustion c. A hot cup of cof d. The chemical re- e. The vaporization	water. of propa fee (syste action in	ne. em) cools or a "hot pack	n a counterto		nuscles ar	nd athletic in	njuries.			
30.	Exothermic reactions Al	LWAYS	release hear	t energy. a.	True b. Fal	se					
31.	A 21.8 g sample of ethan	nol (C ₂ H	5OH: 46.069	9 g/mol)) is	burned in a bo	mb calor	rimeter. (Co	mbustio	n reaction	below)	
	C ₂ H ₅ OH	(l) +	3 O _{2(g)}	\rightarrow 2 C	$O_{2(g)} + 3$	$H_2O_{(g)}$	$\Delta \mathrm{H}^{\circ}_{\mathrm{r}}$	xn =			
	858 kJ of	heat are	released by	y the reacti	on. What is th	e value f	for ΔH° _{rxn} ? (Closest answ	ver please)		

c. 1044 kJ/mol

d. 1813 kJ/mol

e. 2145 kJ/mol

a. 39.4 kJ/mol

b. 858 kJ/mol

32.	Examine	the follow	ing reaction	and identify	the spec	ctator	ions

$$H_2SO_{4(aq)} + Ba(OH)_{2(aq)} \rightarrow BaSO_{4(s)} + 2 H_2O_{(l)}$$

- a. Ba²⁺ & SO₄-2
- b. H⁺ & OH⁻
- c. Ba²⁺ & OH⁻
- d. H^+ & SO_4^{-2}

e. There are no spectator ions in this reaction.

33. Hot water is mixed with cold water in a calorimeter cup.

The hot water gives up 3,500 joules of heat energy and the calorimeter cup absorbs 325 joules of heat energy. Which of the following is TRUE?

- a. The cold water absorbs 3825 Joules of heat energy
- b. The cold water absorbs 3500 Joules of heat energy
- c. The cold water absorbs 3175 Joules of heat energy
- d. The cold water releases 3825 Joules of heat energy
- e. The cold water releases 3500 Joules of heat energy
- f. The cold water releases 3175 Joules of heat energy
- **34.** What is the chemical symbol for tungsten?
 - a. W
- b. T
- c. K
- d. Tn
- e. Ts
- f. Ag
- 35. What mass of CaCl₂ must be dissolved in enough water to produce 2000. mL of 1.25 M CaCl₂?
 - a. 174 g CaCl₂
- b. 277 g CaCl₂
- c. 90.7 g CaCl₂

- d. 81.1 g CaCl₂
- e. $310 g g CaCl_2$

36. (5 pts) Show all work <u>neatly for full credit.</u>

Answers must be circled, adjusted for significant figures and appear with correct units.

Zinc metal reacts with phosphoric acid to produce hydrogen gas according to the following reaction:

$$2H_3PO_{4(aq)} + 3Zn_{(s)} \rightarrow Zn_3(PO_4)_{2(aq)} + 3H_{2(g)}$$

How many grams of zinc metal were consumed if 875.0 mL of H₂ gas is collected over water?

Experimental conditions: $P_{atm} = 568.5 \text{ torr}$ and $T_{lab} = 18.8 \text{ }^{\circ}\text{C}$

Water Vapor Pressure (torr) At Various Temperatures (°C)

T, °C	P, torr
0	4.5851
5	6.5450
10	9.2115
15	12.7931
20	17.5424

T, °C	P, torr
25	23.7695
30	31.8439
35	42.2037
40	55.3651
45	71.9294

37. (5 pts) Show all work <u>neatly for full credit.</u>

Answers must be circled, adjusted for significant figures and appear with correct units.

n-Butyl phthalate is used as an insect repellant and is composed of carbon, hydrogen, and oxygen.

When a 0.3413 g sample was analyzed via combustion analysis, 0.2430 g of water and 0.8633 g of carbon dioxide were produced.

In another analysis, a mass spectrometer is used to determine the molecular weight to be 278.38 g/mol.

Determine the empirical formula and the molecular formula for n-Butyl phthalate.

38. (5 pts) Show all work <u>neatly</u> for full credit.

Answers must be circled, adjusted for significant figures and appear with correct units.

120.0 mL of an unknown sulfuric acid solution is neutralized with 1.50 M potassium hydroxide (See figure at right).

The endpoint of the titration is reached at 15.56 mL

- a. What is the balanced chemical reaction for this experiment?
- b. How many moles of sodium hydroxide are used in the titration?
- c. How many moles of sulfuric acid are consumed?
- d. What is the concentration of the original sulfuric acid?

Ranus	Problems	Show all	work	.Circle answer	SIG FIGS	Allor	nothing
DOHUS	Problems	Show an	WOLK	.Circie answer	319 1193	All or	ոօսութ

(+1 pt). 39. Why is the calorimeter constant important?

(+1 pt) 40. Concentrated hydrochloric acid has a concentration of 12.0 M.

How much distilled water must be carefully combined with 125.0 mL concentrated hydrochloric acid for the final solution's concentration to be 2.25 M?

(+1 pt) 41. Determine the percent yield of a reaction that produces 28.65 g of Fe when 50.00 g of Fe₂O₃ react with excess Al according to the following reaction.

$$Fe_2O_{3(s)} + 2 Al_{(s)} \rightarrow Al_2O_{3(s)} + 2 Fe_{(s)}$$

(+1 pt) 42. 55.0 grams of hot water at 65.0 °C is added to a coffee cup calorimeter containing 75.0 grams of cold water at 24.5 °C.

After stirring, the water mixture reaches a final temperature of 39.0 °C.

Determine the heat gained by the calorimeter in Joules.