Lattice Energy

- Energy change required to separate 1 mol of ionic solid into widely spaced gaseous ions.
- Negative of energy released if ions fall back together.
- ...for NaCl $\Delta H^{\circ}_{Lattice} = +786 \, kJ/mol$
- Determined via the Born-Haber cycle (pg. 334-335)...an application of Hess's Law.

Differences in Lattice Energy

MgS: $\Delta H^{\circ}_{Lattice}$ > KCI: $\Delta H^{\circ}_{Lattice}$

More difficult to pull Mg and S ions apart.

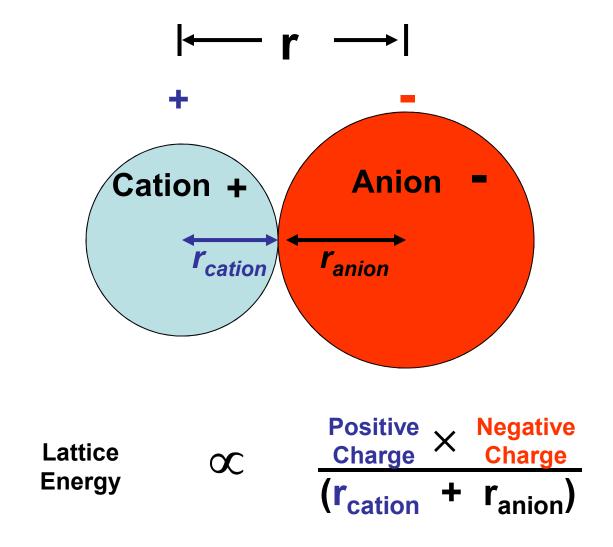
Easier to pull K and Cl ions apart.

Why the difference?

...need to look at the details of the attractive force holding the ions together.

Electrostatic Energy

To increase the Lattice Energy:


- 1. Increase either the Pos. or Neg. charge
- 2. Decrease the distance between charges (r)

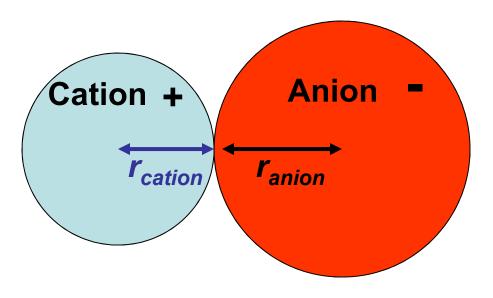
To Decrease the Lattice Energy:

- 1. Decrease either the Pos. or Neg. charge
- 2. Increase the distance between charges (r)

Electrostatic Energy

Lattice energy depends on the charge sizes and the ion radii

Factors Affecting Lattice Energy


Two singly charged ions:

Lattice Energy
$$\propto \frac{(1+)\times(1-)}{(r_{cation}+r_{anion})}$$

Two doubly charged ions: FOUR TIMES THE LATTICE E. !!

Lattice Energy
$$\propto \frac{(2+)\times(2-)}{(r_{cation}+r_{anion})} = 4\times \frac{(1+)\times(1-)}{(r_{cation}+r_{anion})}$$

Factors Affecting Lattice Energy

For Large Lattice Energy:

- 1. Multiple Pos. and/or Neg. charges
- 2. Small ionic radii (small ions)

For Small Lattice Energy:

- 1. Low number Pos. or Neg. charges
- 2. Large ionic radii (r)

Lattice Energy Comparisons

Arrange the following ionic solids in order of decreasing lattice energy:

http://www.chemicool.com/elements/ http://www.webelements.com

	+1 -1 KI	+2 -2 MgO	+1 -1 Nal	+1 -1 LiF
Cation Radius	0.152 nm	0.086 nm	0.116 nm	0.090 nm
Anion Radius	0.206 nm	0.126 nm	0.206 nm	0.119 nm

+2/-2 charges important MgO

Lattice Energy: 3791 kJ/mol Small ionic radii LiF

1036 kJ/mol

Larger ionic radii Na

704 kJ/mol

radii K

Largest ionic

649 kJ/mol

$$T_{melt} = 2852 \, ^{\circ}C$$
 $T_{melt} = 845 \, ^{\circ}C$

$$T_{melt} = 661 \, ^{\circ}C$$
 $T_{melt} = 680 \, ^{\circ}C$

$$T_{\text{melt}} = 680 \, ^{\circ}\text{C}$$

