Solutions (Ψ) to Schrodinger's Equation

- Many solutions are possible ($\Psi_{a}, \Psi_{b}, \Psi_{c} \ldots$)
- Each produces a different electron probability distribution around the atom.
- Each distribution or orbital contains the electrons 90% of the time and has a unique shape.
- Each orbital is identified by sets of numbers called quantum numbers.
(much like addresses are used to identify buildings)

The Principle Quantum Number:

n

- Always a positive integer 1

$$
\mathrm{n}=1,2,3, \mathrm{etc}
$$

- Electrons in orbitals with large n values have higher P.E. than electrons with low n values.
- Electrons in orbitals with large n values are more likely to be farther from the nucleus

The Angular Momentum Quantum Number:

- $\ell=0,1,2,3 \ldots . .(\mathrm{n}-1)$
- Values of I are associated with the following letters:
- $\ell=0$ "s" orbital
- $\ell=1$ " p " orbital
- $\ell=2$ "d" orbital
- $\ell=3$ " f " orbital
- Values of I are identified with the various shapes of orbitals.

The Magnetic Quantum Number:

 m_{ℓ}

- Describes the direction an orbital points around the nucleus.

Quantum numbers: n,, , m,

Combinations of quantum numbers are like addresses for orbitals.

The Rules:

$$
\begin{aligned}
& \mathbf{n}=\mathbf{1}, 2,3, \ldots \\
& \ell=0,1,2,3 \ldots(\mathbf{n}-1) \\
& \ldots \ldots m_{\ell} \ldots+
\end{aligned}
$$

List all of the quantum number combinations associated with $\mathrm{n}=2$.

$\Psi_{200} \quad \Psi_{21-} \quad \Psi_{210} \quad \Psi_{211}$

Quantum numbers: $\mathrm{n}, \ell, \mathrm{m}$,

List all of the quantum number combinations associated with $\mathrm{n}=4$.

Question: Is $\mathrm{n}=4, \ell=3$ and $\mathrm{m}_{\ell}=-1$ a reasonable set of quantum numbers?
Yes! Ψ_{43-1} is reasonable! (at least it follows the rules!)

