Spectroscopy and Stationary States

Spectroscopy Single Slit **Prism Diffraction:** Bending of light as it passes between areas of different optical density

Incandescent Light Bulb

Continuous Spectrum (5 colors shown for clarity)

"White Light" Source

Hydrogen Spectroscopy

VOLTAGE

Emission Spectrum

Emission Spectra: Bright lines of color separated by regions of total darkness.

Emission Spectra: Bright lines of color separated by regions of *total darkness.*

Line Spectrum: Identifying a Pattern

Rydberg Equation:

$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

 R: Rydberg Constant.
 ... n_1 and n_1

 R = 1.096766 × 10⁷ m⁻¹
 ... $n_2 > n_1$.

 $\dots n_1$ and n_2 are integers $\dots n_2 > n_1$.

Johannes Rydberg (1845 – 1919)

Found a mathematical pattern in the hydrogen emission line spectrum.

Rydberg Equation: Hydrogen Atom

Calculate the wavelength in nanometers of the line having $n_1=2$ and $n_2=4$.

Rydberg Equation:

For Hydrogen Visible Spectrum:

$$\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) \qquad n_1 = 2$$

$$n_2 = 3, 4, 5, 6, \text{ etc}$$

$$\frac{1}{\lambda} = 1.096766 \times 10^7 \text{m}^{-1} \left(\frac{1}{2^2} - \frac{1}{4^2}\right)$$

$$\frac{1}{\lambda} = 1.096766 \times 10^7 \text{m}^{-1} \times (0.1875)$$

$$\frac{1}{\lambda} = 2056436.25 \text{ m}^{-1}$$

$$\lambda = 4.86278 \times 10^{-7} \text{m} = 486.278 \text{ nm}$$