Chapter 6 Continued Hess's Law

Germain Henri Hess
(1802-1850)

$\Delta \mathrm{H} . .$. a series of reactions.

$\Delta \mathrm{H}$...a series of reactions.

Hess's Law of Heat Summation:

If the reaction is carried out in a sequence of steps, the ΔH of the reaction equals the sum of the ΔH values of each of the steps.
$\Delta \mathbf{H}_{\text {rxn }}=\Sigma \Delta \mathbf{H}_{\text {step }}=\Delta \mathbf{H}_{\text {step } 1}+\Delta \mathbf{H}_{\text {step 2 }}+\Delta \mathbf{H}_{\text {step } 3}+\ldots$
ΔH is a state function that only depends on the initial and final states of the reaction and not on the exact pathway that transforms reactants into products.

Example

Reactions:

No Change

$C \sigma_{2(\mathrm{~g})} \rightarrow$	$\mathrm{C}_{\text {(diamond) }}+\sigma_{2(\mathrm{~g})}$	$\Delta \mathrm{H}=+396 \mathrm{~kJ}$
$\mathrm{C}_{\text {(graphite) }}$	$\rightarrow \quad \mathrm{C}_{\text {(diamond) }}$	$\Delta \mathrm{H}=+2 \quad \mathrm{~kJ}$

Example

Target Reaction:

$2 \mathrm{~B}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \quad \mathrm{B}_{2} \mathrm{H}_{6(\mathrm{~g})}$
$\Delta \mathrm{H}=36 \mathrm{~kJ}$

No change

