Particle Velocity:

 Temp. Dependence Many particles.

Number of $\mathbf{N}_{\mathbf{2 (g)}}$ molecules VS.
Velocity

Increase temperature \Rightarrow more molecules will have greater velocities.

Increase Temperature \Rightarrow average velocity increases.

Greatest number of molecules have this velocity @ 273K

Greatest number of molecules have this velocity @ 2273K

Average Kinetic Energy

R=8.314 J/mol K

 $\overline{\text { K.E. }}=\bar{E}_{\mathrm{k}} \quad \propto \quad \mathrm{T}$

Average Kinetic Energy is proportional to the Temperature (K)
...that is, as the temperature increases, so does the average kinetic energy of the molecule...

Particle Velocity: Mass Dependence

273 K: Constant Temperature
Consider the following molecules to have the same K.E.
$\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{He}, \mathrm{H}_{2}$

Different velocity distributions! Why?

Graham's Law of Effusion

Effusion: Gas expanding through a small hole into vacuum.

"My atmosphere is a mixture of Ar and He gas"
"He ${ }_{(\mathrm{g})}$ will leave 3.2 times more quickly than $\mathrm{Ar}_{(\mathrm{g})}$ "
Small low-mass molecules effuse with higher rates that is, more quickly than high mass species

$\frac{\text { Rate }_{\mathrm{He}}}{\text { Rate }_{\mathrm{Ar}}}=\frac{\sqrt{39.9 \mathrm{amu}}}{\sqrt{4 \mathrm{amu}}}$
Rate $_{\text {He }}$ $=3.2$
Rate $_{\text {Ar }}$

Diffusion

The movement of one gas (or liquid) through another.

Graham's Law Applies:
$\frac{\text { Rate }_{\text {gas1 }}}{\text { Rate }_{\text {gas2 }}}=\frac{\sqrt{M}_{2}}{\sqrt{M}_{1}} \quad \frac{\text { Rate }_{\text {skunko }}}{\text { Rate }_{\text {stinko }}}=\frac{\sqrt{M_{\text {stinko }}}}{\sqrt{M_{\text {skunko }}}}=\frac{\sqrt{565}}{\sqrt{1530}}=0.61$
Two lovely new fragrances!

Diffusion:

$\frac{\text { Rate }_{\text {NH3 }}}{\text { Rate }_{\mathrm{HCl}}}=\frac{\sqrt{36.46 \mathrm{am}} u}{\sqrt{17.03 \mathrm{amu}}}=1.46 \quad \frac{\mathrm{y} / \mathrm{t}}{\mathrm{x} / \mathrm{t}}=\frac{\mathrm{y}}{\mathrm{x}}=1.46$
$\frac{(0.85-x)}{x}=1.46$

$$
x=0.35 \mathrm{~m} \quad y=0.50 \mathrm{~m}
$$

