Kinetic Molecular Theory Microscopic model for real-world gas behavior

Microscopic Model: Assumptions:

- 1. Gases contain microscopic particles (atoms and/or molecules).
- 2. The volume or space the particle occupies isn't significant.
- 3. Particles move in straight lines until there is a collision.
- 4. All collisions are elastic, that is no energy is lost.

Collisions Produce Pressure

How can we increase pressure?

- 1. Increase how often collisions occur. (i.e. *increase collisional frequency*)
- 2. Increase the energy of the collisions.

Increase velocity or mass.

Pressure and Volume...Boyle's Law $P \times V = constant$ (n & T are constant)

Volume and Temperature (Charles' Law)... V/T = constant (P & n fix<u>ed)</u>

Increase the gas temperature

Increase the particle velocities

Increase the K.E. of the particles

(particles strike with more force)

Collisions occur more often

(Collision frequency increases)

Click on any photo and view 5.11: Microscopic Charles' Law movie.

http://leung.uwaterloo.ca/CHEM/120/CINEMA.htm

Volume and Temperature (Charles' Law)... V/T = constant (P & n fixed)

http://leung.uwaterloo.ca/CHEM/120/CINEMA.htm

For a continuous quick time movie, click on any photo above and click on 5.12: Collapsing Can.

What affects the K.E. of Molecules?

Less K.E.

Less K.E.

55 mph

