Gas Law Relationships (P, V, n, T)

Name
Charle's Law
(P, n)
Relationship
Equation

$$
\begin{array}{cc}
\underset{\substack{\text { Volume is directly } \\
\text { proportional to temperature }}}{ } & \frac{V_{i}}{T_{i}}=K=\frac{V_{f}}{T_{f}}
\end{array}
$$

Boyle's Law
(T, n)

$$
P_{i} \times V_{i}=k=P_{f} \times V_{f}
$$

Pressure is inversely
proportional to temperature
Avagadro's Law (T, P)
$\mathrm{P} \propto \frac{1}{\mathrm{~V}}$
$\mathbf{V} \propto \mathbf{n}$
Volume is directly
proportional to the number of moles of gas.

Combined
Gas Law
(n)

$$
\mathbf{P} \times \mathbf{V} \propto \mathbf{T}
$$

The product of pressure and volume is proportional to temperature.

$$
\frac{V_{i}}{n_{i}}=k=\frac{V_{f}}{n_{f}}
$$

$$
\frac{P_{i} V_{i}}{T_{i}}=k=\frac{P_{i} V_{f}}{T_{f}}
$$

Boyles law (PV = k)

Avagadro’s Law (Molar Volume)

Molar volume of an ideal gas @ STP: 1 mole = 22.414 Liters

Combined Gas Law (PV/T = k)

What is the max. volume of gas that can be used so that the balloon won't break at high altitude?

Launch:

$$
\begin{array}{ll}
\mathrm{P} & =1.00 \mathrm{~atm} \\
\mathrm{~T} & =25.0^{\circ} \mathrm{C}(298.15 \mathrm{~K}) \\
\mathrm{V} & =? \mathrm{~L}
\end{array}
$$

Partially filled high altitude Balloon

Decrease T: balloon contracts Decrease P: balloon expands

pposphere:

titude $=10$ miles

$$
\begin{array}{ll}
\mathrm{P} & =0.10 \mathrm{~atm} \\
\mathrm{~T} & =-57.0^{\circ} \mathrm{C} 9(216.15 \mathrm{~K}) \\
\mathrm{V}_{\text {balloon }} & =3200 \mathrm{~L}(\max)
\end{array}
$$

$\mathrm{PV} / \mathrm{T}=\mathrm{k}$
$\mathrm{PV} / \mathrm{T}=(0.10 \mathrm{~atm})(3200 \mathrm{~L}) / 216.15 \mathrm{~K})$
PV/T $=(0.10$ atm $)(3200 \mathrm{~L}) / 216.15 \mathrm{~K})$
PV/T = 1.4804 L•atm/K = k

Using Molar Volume

Problem 5.54
When 35.6 L of ammonia and 40.5 L of oxygen gas at STP burn, nitrogen monoxide and water are produced. After products return to STP, how many grams of nitrogen monoxide are present?

Ideal Gas Law

PV

 nTR: Universal Gas Law Constant

$$
\begin{array}{lr}
\mathrm{R}=8.31447 & \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \\
\mathrm{R}=0.0820578 & (\mathrm{~L} \cdot \mathrm{~atm}) /(\mathrm{mol} \cdot \mathrm{~K})
\end{array}
$$

Let units determine the correct gas law constant to use.

Ideal Gas Law (cont.)

$$
n=\frac{P V}{R T} \quad V=\frac{n R T}{P} \quad P=\frac{n R T}{V}
$$

