Oxidation-Reduction

Oxidation/Reduction Reactions

Oxidation/Reduction Reactions
 $\mathrm{Zn}_{(\mathrm{s})}+\mathrm{CuSO}_{4(\mathrm{aq})} \xrightarrow{\text { Fonerad }} \mathrm{Cu}_{(\mathrm{s})}+\mathrm{ZnSO}_{4(\mathrm{aq})}$

$\mathrm{Cu}_{(\mathrm{s})}+\mathrm{ZnSO}_{4(\mathrm{aq})} \stackrel{\text { Peverse }}{\longrightarrow} \mathrm{Zn}_{(\mathrm{s})}+\mathrm{CuSO}_{4(\mathrm{aq})}$

An oxidation reduction reaction will only occur spontaneously in one direction.

[^0]
Oxidation/Reduction: Terminology

Reducing Agent
Oxidized

Neutral Zn atom loses $2 \mathrm{e}^{-}$... and changes into... Zn^{2+} cation

Oxidation

Loss of electrons
Increasing charge
" $Z n_{(s)}$ is
oxidized."

Redox: Monitoring charge Changes

Oxidation Number (O.N.): The charge the atom would have if its electrons were held by the most attractive atom.

Elemental Species: O.N. = 0

- $\mathrm{O}_{2(\mathrm{~g})}, \mathrm{Al}_{(\mathrm{s})}, \mathrm{Xe}_{(\mathrm{g})}, \mathrm{Hg}_{(\mathrm{L})}$ all have O.N. $=0$

Monatomic ions: O.N. = Charge

- $\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}, \mathrm{Co}^{2+}{ }_{(\mathrm{aq})}, \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})} \mathrm{O} . \mathrm{N} .=+2$
- $\mathrm{Cu}^{+}{ }_{(\mathrm{aq})}, \mathrm{Na}^{+}{ }_{(\mathrm{aq})}, \mathrm{Hg}_{2}{ }^{2+}{ }_{(\mathrm{aq})}$ O.N. $=+1$

Use Periodic table to get O.N. of representative elements
(covered in nomenclature notes)

- LiCl: Lithium is group 1A: O.N. = +1

Chlorine is group VIIA: O.N. = -1
*Hydrogen in a compound: O.N.= +1 *Oxygen in a compound O.N. = -2

* This is often but not always true.
Σ O.N.'s = charge on molecule. (Σ means to sum or add together)

Redox: Monitoring charge Changes

Determine the oxidation numbers of all species in the following species:

Add together all O.N. 's
...result will be charge on formula unit.

Redox: Monitoring charge Changes

What is the oxidation number of nitrogen in $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$

Atoms

Oxidation

?

-1
$=0$ numbers

[^0]: $\mathrm{ZnSO}_{4(\mathrm{aq})}$

