

Chapter 11

Sections 11.1 & 11.2 Valence Bond Theory No assigned problems substitute molecular modeling lab activity

Sigma(σ) Bonds: On-axis Overlap H_2 ΗF

Sigma (o) Bond 1s – 1s overlap on axis.

orbital

Sigma Bonds: On Axis Overlap

...but something is wrong here!!!

Sigma Bonds: On Axis Overlap

p_z

p_v

 H_2O

We can't get ALL of the molecular geometries from atomic orbital overlap!

90° Bond Angle!

... is supposed to

be 104.5°

How can the required geometries be obtained using atomic orbitals?

Valence Bond Theory: New Geometries From *Blended* Atomic Orbitals

1s <u>↑↓</u> Ground State E-Level Diag

No unpaired $e^- \Rightarrow$ No possible bonds!

Promoted State E-Level Diag

1s _<u>↑</u>↓

2 unpaired e⁻ ⇒
2 possible bonds

1s <u>1↓</u>

Hybrid State E-Level Diag

2 sp hybrid levels form 2 bonds

$BeCl_2$: Two σ Bonds

Valence Bond Theory: Getting New Geometries From Atomic Orbitals

1s <u>↑↓</u> Ground State E-Level Diag

1 unpaired $e^{-} \Rightarrow$ 1 possible bond 1s <u></u>1↓

Promoted State E-Level Diag

3 unpaired e⁻ ⇒ 3 possible bonds Hybrid State E-Level Diag

3 sp² hybrid levels form 3 bonds

BF₃: Three σ Bonds

