Chapter 1

Physical and Chemical Changes

Physical Changes: ...a change in the physical form

Phase
 Changes:

Regular, arrangement of water molecules

Vibrating around their equilibrium positions

Water
Molecule

Structure disappears

Molecules are close together and tumble over one another randomly

Gas Phase Water

Molecules are far apart and moving with very high speed

Chemical Changes: Change in chemical composition

http://www2.uni-siegen.de/~pci/versuche/english/v44-1-1.html

Sodium metal is removed from kerosene and placed in liquid water.

The sodium metal reacts with the water producing heat, hydrogen gas and sodium hydroxide.

The heat melts the sodium metal and ignites the hydrogen gas producing a flame.
$2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2}(\mathrm{~g})$

Energy: Capacity to do work.

Potential Energy

...Stored up energy

- Food
- Fuel
- Compressed spring
- Blown up balloon
- Nuclear energy
- Batteries (stored chemical energy)

Kinetic Energy

...energy of motion

- Car moving
- light
- heat
- sound
- wind

Conservation of Energy

Energy is not lost or destroyed but instead changes form.

Separations: Terminology

Mixtures: Materials with variable composition

Pure substances: Materials with fixed/constant composition

Separations: Continued

Separations: Finale

Distilled Water

 $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}$Pure substance (Fixed Composition)
11.2 \% Hydrogen
88.8 \% Oxygen

Chemical Change: Electrolysis

Oxygen Gas: $\mathbf{O}_{\mathbf{2 (g)}}$
Element

Hydrogen Gas: $\mathrm{H}_{\mathbf{2 (g)}}$
Element

